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—\- ~ INTRODUCTION

The laminar flow about a rotating disk situated in a large body of quiescent

HEAT TRANSFER FROM A ?OTATING DISK TO FLUIDS OF ANY PRANDTL NUMBER

{

fluid was first analyzed by von Karman [1]. The heat transfer from such a ro-

o
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| o ¢
‘ ;,5 tating disk has been studied by Millsaps and Pohlhausen {2] for fluids which

(;j have Prandtl numbers in the range 0.5< (CV/CP) Pr < 10. For gases (Pr = 0.72),

the effects of compressibility were examined by Ostrach and Thornton [3]. 1In
‘ the present investigation, the restriction on Prandtl number is lifted, and

heat transfer results are obtained for fluids of all Prandtl numbers.

ANALYSES

The heat transfer process in the fluid is governed by the conservation of

| energy principle, which takes the following form in cylindrical coordinates .,.y
‘ cvaT+V—(PaT+V o) _ g vop (1)
* Peo\'r Sr " T30 7 Y232/ ©
where T is the static temperature and ye is the lLaplace operator. The ve-
locities may be rephrased in terms of von Karman's similarity variables as ’);
4 —
T
follows: | L'///
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w
n=®) e voewEm),  Vg=wmo), v, = (@92 AW
(2a)

and in addition, a dimensionless temperature may be defined as

o(n) = (T - ¢,)/(T, - T,) (2p)

where T, and T, respectively represent the surface temperature (a constant)
? and the ambient temperature. Introducing these new variables into the energy

equation, there is obtained . Copy No?
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The primes denote differentiation with respect to 7 and Pr ié the Prandtl

number of the fluid. From the definition of 6 as given by equation (2b), it is

.c¢lear that the boundary conditions are

6(0) = 1, 8+0 as n + = (4)

Numerical solutions of equation (3) subject to the boundary conditions (4)
have been carried out on an IBM 653 electronic computer for Prandtl numbers of
0.01, 0.1, 1, 10, and 100¥, The temperature distributions corresponding to these
solutions are presented in figures 1 and 2 respectively for the low and high
Prandtl number ranges. Also shown on the graphs are the values of the velocity
function H wused as input data in the solution of equation (3). Inspection of
these figures reveals that for low Prandtl numbers, the thermal boundary layer
is much thicker than the velocity boundary layer. The opposite characteristic is
displayed for high Prandtl numbers. This suggests a procedure for obtaining
asymptotic solutions.

First, as the Prandtl number becomes very small, figure . indicates that H
is essentially constant throughout the thermal boundary layer. Under these cir-
cumstances, the solution of equation (3) is

o = oFF H(w)7 ()

where H(w) = - 0.88447. In particular, the temperature derivative at the wall,

needed in computing the heat transfer, is

(de/dn)n=o = - 0.88447 Pr (5a)

From figure 2, it is seen that as the Prandtl number approaches very large
values, the thermal boundary layer is confined to a smaller and smaller  portion

of the velocity boundary layer. This prompts us to write H in terms of a

* The values of H(n) needed to carry out the solutions were obtained by re-solving
von Karman's differential equations.
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series expansion about 1 = 0. So,

1"
H=H0) + B'(0)y + 3% p2 4 . |
Since H(0) = H'(0) = 0, we write
2
H = H"(0) 112—

for small values of 7. A solution of equation (3) correspending to this approx-

imation for H is

[-Pr 5"(0)/6]L/3 1
/ exp(-&%) ag
0

0 =1 - (6)

/ exp(-&) ar
0

The dimensionless temperature derivative at the wall associated with this solu-

tion is
(de/dn)n___o = [-Pr H"(o)/e]l/s/r(4/3) = 0.62048 Pri/3 (6a)

where the value -1.02046 has been used for H"(0), and T represents the gamma

function as found in numerous mathematical tables.

HEAT TRANSFER RESULTS
The local rate of heat transfer from the disk to the fluid may be evaluated
using Fourier's Law, i.e.,
q = -k(3T/9z) 4 (7)
Introducing a local heat transfer coefficient h by the definition
h = q/(Tw - IL)
and evaluating equation (7) in terms of the variables of the analysis, there is

obtained
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v\1/2
h@ . (i?.) (7a)

k B dn n=0
Since (d@/dn)n=o depends only on the Prandtl number, it is seen that for a given
fluid, the variation of the heat transfer coefficient with angular velocity is
given by
n o~ ol/?

Further, h 1is constant over the disk surface.

Using the numerical solutions of equation (3), the dimensionless heat trans-
fer results are listed in table I.

TABLE I

Dimensionless Heat Transfer Results

Pr y 1/2
{2) "
@
0.01 0.0087051
0.1 0.076581
1 0.39625
10 1.1341
100 2.6871

For the limiting situations of very low and of very high Prandtl numbers, the
following asymptotic expressions for the heat transfer may be written utilizing

equations (5a) and (6a)

(3) 7
hQi)l/j/k

0.88447 Pr, Pr -0 (8a)

0.62048 Prl/3, Pr —+ = (8b)
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A graphical presentation of the heat transfer results is given on figure 3.
The results have been plotted in two different ways, one appropriate to low
Prandtl number fluids and the other appropriate to high Prandtl number fluids.
The asymptotic lines are also shown (dashed). It is seen that the low Prandtl
number asymptote already closely coincides with the computed curve at Pr = 0.01,
the deviation being only 1.5%. The high Prandtl number heat transfer results
approach their asymptote somewhat less rapidly, the difference between the com-
puted and asymptotic curves being about 6.5% at Pr = 100; this deviation is not
large from the practical point of view. The significant fact is that the
asymptotic curves provide sufficiently accurate heat transfer results outside
the Prandtl number range for which the numerical solutions have been obtained.

By utilizing eitcher the numerically—computed results or the asymptotic ex-
pressions, heat transfer calculations can be carried out for fluids of any Prandtl

number.
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Fig. 1. - Temperature distrlbutions for low Prandtl number fluids
%H/H(-») 1s input function for temperature solutions).
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Fig. 2. - Temperature distributions for high Prandtl number fluilds
%H/H(v) is input function for temperature solutions).
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Dimensionless heat transfer
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Fig. 3. - Heat transfer results.
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